Use of Unmanned Aerial Vehicles (uav) for Urban Tree Inventories
نویسندگان
چکیده
In contrast to standard aerial imagery, unmanned aerial systems (UAS) utilize recent technological advances to provide an affordable alternative for imagery acquisition. Increased value can be realized through clarity and detail providing higher resolution (2-5 cm) over traditional products. Many natural resource disciplines such as urban forestry will benefit from UAS. Tree inventories for risk assessment, biodiversity, planning, and design can be efficiently achieved with the UAS. Recent advances in photogrammetric processing have proved automated methods for three dimensional rendering of aerial imagery. Point clouds can be generated from images providing additional benefits. Association of spatial locational information within the point cloud can be used to produce elevation models i.e. digital elevation, digital terrain and digital surface. Taking advantage of this point cloud data, additional information such as tree heights can be obtained. Several software applications have been developed for LiDAR data which can be adapted to utilize UAS point clouds. This study examines solutions to provide tree inventory and heights from UAS imagery. Imagery taken with a micro-UAS was processed to produce a seamless orthorectified image. This image provided an accurate way to obtain a tree inventory within the study boundary. Utilizing several methods, tree height models were developed with variations in spatial accuracy. Model parameters were modified to offset spatial inconsistencies providing statistical equality of means. Statistical results (p = 0.756) with a level of significance (α = 0.01) between measured iii and modeled tree height means resulted with 82% of tree species obtaining accurate tree heights. Within this study, the UAS has proven to be an efficient tool for urban forestry providing a cost effective and reliable system to obtain remotely sensed data. iv DEDICATION This study is dedicated to my wife Laurie and son Zachary. They have supported me throughout my time at Clemson and they deserve a large amount of credit, for they have provided beyond measure patience, support and love to help me succeed. v ACKNOWLEDGEMENTS
منابع مشابه
Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملAutonomous Exploration in Unknown Urban Environments for Unmanned Aerial Vehicles
In this paper, we present an autonomous exploration method for unmanned aerial vehicles in unknown urban environment. We address two major aspects of explorationmap building and obstacle avoidanceby combining model predictive control (MPC) with a local obstacle map builder. An onboard laser scanner is used to build the online map of obstacles around the vehicle during the flight. A real-time MP...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کامل15.097 Student Project: Operator-Defined SUAV Classification Tree Algorithms
The growing divide between the potential of fully automated teams of Unmanned Aerial Vehicles (UAVs) and the very limited autonomy seen in operational use deserves attention. This paper proposes a limited step to realize increased autonomy use in operational settings by applying decision tree learning algorithms to UAV operator’s flight patterns. These algorithms learn and then propose UAV traj...
متن کامل